壓鑄以高壓射入金屬液,使模腔能在瞬間被填滿,成型速度快,能穩定複製外型複雜、細節豐富的零件。高壓充填提升金屬致密度,使表面光滑、尺寸一致性良好。由於成型週期短、重複度高,壓鑄在大量生產中具備明顯成本優勢,適合中小型、高精度與高產能需求的產品。
鍛造以強大外力讓金屬產生塑性變形,使材料纖維方向更緊密,因此在強度、耐衝擊與耐疲勞特性上表現突出。雖有卓越結構性能,但鍛造成形速度慢,難以打造細部複雜的造型,且設備與模具成本較高,多用於需要承受高載荷的零件。
重力鑄造依靠金屬液自然填充模具,設備簡單、模具壽命長,但因流動性較弱,使細節呈現能力與尺寸穩定度不及壓鑄。冷卻週期較長,使產能無法快速提升,適用於中大型、壁厚較均勻的零件,常用於中低量生產與成本控制的應用中。
加工切削透過刀具逐層移除材料,是四類工法中精度最高、表面品質最佳的製程方式。雖能達到極窄公差,但加工時間長、材料浪費多,使單件成本較高。加工切削適合少量製造、原型開發,或作為壓鑄後的精修工序,使關鍵尺寸達到更高精準度。
四種工法在效率、精度與成本上呈現明顯差異,能依零件特性與生產量需求選用最佳製程。
壓鑄是一項利用高壓將熔融金屬射入模具,並在短時間內完成凝固成形的金屬加工技術。常見的壓鑄金屬材料包括鋁合金、鋅合金與鎂合金,因其熔點適中、流動性佳,能在高壓下注入模具時順利填滿每個細節,使成品具有高強度與良好表面品質。
壓鑄模具由固定模與活動模構成,合模後形成完整的模腔。模具內設計了澆口、排氣槽與冷卻水路等重要結構,以確保金屬液流動順暢並在理想狀態下凝固。澆口負責引導金屬液均勻進入模腔;排氣槽排除模腔內的空氣,使金屬填充過程更加完善;冷卻水路則穩定模具溫度,避免成形過程因局部過熱或冷卻不均而影響外觀或尺寸。
金屬材料加熱至液態後會注入壓室,接著在高壓活塞的推動下以極快速度射入模具腔體。這項高壓射出能讓金屬液瞬間填滿模腔,即使是薄壁構造、尖角或複雜曲面都能精準呈現。金屬液流入模具後立即接觸到較低溫的模壁,並在冷卻水路的幫助下迅速固化,形成穩定的外型。
完成凝固後,模具開啟,由頂出系統將金屬件推離模腔。脫模後的成品通常會進行修邊與簡單加工,使外觀更為整齊。壓鑄透過高壓動能、模具熱控與材料特性三者協同運作,打造出高效率、高精度的金屬成形流程。
壓鑄製程需要金屬在高壓下注入模具並迅速凝固,因此材料的密度、流動性、強度與耐腐蝕性,會直接影響最終零件的品質。鋁、鋅與鎂是壓鑄中最常用的三種金屬,它們的物理特性差異明顯,適用範圍也有所不同。
鋁材以輕量與高強度為主要優勢,非常適合需要兼具剛性與減重的零件。鋁的耐腐蝕性佳,在溫濕度變化大的環境中依然能保持穩定品質。鋁液在壓鑄時冷卻速度快,使得成品尺寸精度高、表面平滑細緻。鋁在凝固時速度較快,因此面對複雜幾何結構時,需要較高射出壓力才能完整填型。
鋅材則以極佳的流動性著稱,能輕鬆呈現薄壁、密紋與複雜細節,是小型精密零件的首選金屬。鋅的密度高,讓成品更具扎實質感,同時具備良好耐磨性與尺寸穩定度。鋅的熔點低,能降低模具磨耗,適合大量生產並保持加工一致性。
鎂材是三者中最輕的金屬,密度遠低於鋁與鋅。鎂具備不錯的剛性與適度強度,再加上天然減震特性,使其特別適用於承受動態負荷的機構件。鎂在壓鑄時成型速度快,有利於提高產能,不過因化學活性高,需要在穩定環境下熔融與射出,以維持表面光潔與內部結構的完整性。
鋁重視輕量與耐用、鋅擅長精密成型、鎂則提供極致減重效果,能依產品特性找到最適材料配置方向。
在壓鑄製品的生產過程中,產品的品質要求非常高,尤其是精度、強度與外觀的控制。常見的品質問題包括精度誤差、縮孔、氣泡及變形等,這些問題可能會影響產品的功能性與結構穩定性,因此必須透過精密的檢測方法來識別並解決這些缺陷。
壓鑄件的精度是品質控制中的一項重要指標。壓鑄過程中的模具設計、金屬熔液的流動性、冷卻過程等因素都可能對精度產生影響。精度誤差通常會導致產品尺寸不符或形狀偏差,影響其功能與適配性。為了確保產品的精度,三坐標測量機(CMM)是目前最常用的測量設備。這種設備能夠在數微米範圍內準確測量每個壓鑄件的尺寸,並將其與設計標準進行比較,及時調整製程。
縮孔是由於金屬在冷卻過程中的收縮現象,尤其在較厚的部件中,收縮會導致內部產生孔洞,這不僅會削弱壓鑄件的強度,也會對整體結構產生不利影響。X射線檢測技術是用來發現縮孔的有效方法,這項技術能夠穿透金屬,檢查內部是否存在縮孔,並幫助調整生產工藝。
氣泡缺陷則是熔融金屬在充模過程中未能完全排出空氣所產生,氣泡會使金屬的密度下降,從而降低其強度和耐久性。常見的檢測方法是超聲波檢測,它可以有效探測出金屬內部的微小氣泡,並及時發現問題。
變形問題多由冷卻過程中的不均勻收縮引起,這會導致壓鑄件在冷卻後形狀發生變化。為了防止變形,會使用紅外線熱像儀來監測冷卻過程中的溫度變化,確保冷卻過程的均勻性,從而減少變形的風險。
壓鑄模具的結構設計直接影響成品精度,型腔形狀與流道配置若能精準控制金屬液的流向,便能在高壓射入過程中保持穩定填充,使邊角、筋位與薄壁區不易變形,尺寸誤差也更容易控制在合理範圍內。分模線位置若設計不佳,容易產生毛邊或外觀瑕疵,因此布局需兼顧脫模順暢與外觀要求。
散熱系統是模具運作的重要結構。壓鑄過程中的高溫循環若無有效冷卻,模具會出現局部過熱,使金屬液凝固不均,造成縮孔、亮斑或流痕。完整的水路配置能讓模具溫度保持穩定,縮短冷卻時間,提高整體生產效率,並降低熱疲勞造成的裂紋,使模具更耐用。
表面品質則取決於型腔的平整度與表面處理。模具表面越精細,金屬液充填後的外觀越光滑,不易出現粗糙紋路或黏模現象。搭配耐磨或表面強化技術,能讓模具在長期生產後仍維持穩定的表面精度,讓成品外觀品質一致。
模具保養是確保製程穩定的重要流程。排氣孔、分模面與頂出機構在長期運作後會累積積碳或磨耗,若未定期清潔,容易造成毛邊增加、頂出不順或散熱效率下降。透過定期檢查、修磨與保養,可維持模具最佳狀態,延長使用壽命,並降低生產不良率。